Atmospheric time constant with MASS and FADE

A. Tokovinin CTIO, Chile

Adaptive Optics time constant τ_0

Definition (1 rad² phase difference between wave-fronts at $\Delta t = \tau_0$)

$$\tau_0 = 0.314 \, r_0/V_0 = 0.057 \, \lambda^{6/5} \left[\int C_n^2(h) \, V^{5/3}(h) \, dh \right]^{-3/5}$$

MASS time constant:

$$\tau_{0, \text{ MASS}} = 0.175 (\sigma^2_{\text{DESI}})^{-3/5} ; \sigma^2_{\text{DESI}} = <\Delta[I_A(1\text{ms})/I_A(3\text{ms})]>^2$$

This is an approximation! So scale it, $\tau_0 \approx C \tau_{0. MASS}$

What is the best value of the corrective coefficient C?

Previous simulations: C=1.27 while Travouillon et al. [4] use C=1.7

Numerical simulation

1. Set turbulent layer strength (seeing) & sp. response

2. Generate intensity at the ground

3. Apply spatial filter, compute DESI for different wind speeds

Corrective coefficient C vs. wind speed for different seeing

Results

MASS over-estimates τ_0 at slow wind speeds and under strong scintillation. The coefficient C=1.27 is good for typical situations (turbulence at 200mb, wind ~30m/s). However, C varies from 0.6 to 1.6.

The MASS method is approximate!

Fast Defocus = FADE

The temporal structure function (SF) of the Zernike defocus coefficient a4 (in rad2) has initial quadratic part

 $D_4(t) \approx 0.036 (D/r_0)^{-1/3} (t/\tau_0)^2$.

This gives a clear method to measure τ_0 [2].

Comparison between FADE and MASS

SOAR Adaptive Module tests at Cerro Pachon, Chile Night 1 (Aug 31, 2009): clear, with strong and fast turbulence Night 2 (Oct. 2, 2009): better seeing, but only for 4 hours.

Example of data (night 1). Points – measured SF, curve – two-layer model fitted to the first 0.1s segment

FADE vs. MASS with C=1.27

Method of Fusco et al. [3]: half-time

The half-width of the SF (or covariance) of Zernike aberrations is related to the wind speed V. For defocus and single layer,

 $t_{0.5} = 0.30 (D/V)$, hence $\tau_0 = 1.05 t_{0.5} (r_0/D)$

In the multi-layer case, $t_{0.5}$ measures the strongest layer, while τ_0 depends mostly on the fastest layer.

Test case: two layers with 1" and 0.4" seeing, V=[10, 60]m/s. For each layer, τ_0 =[3.17, 1.32]ms, combined τ_0 =1.16ms

The half-time method gives $t_{0.5}$ =0.105s \rightarrow τ_0 =2.39ms

The true time constant is τ_0 =1.16ms.

The half-time method works well for one layer, but is biased by 2x in this test case.

Structure function of a₄ for the 2-layer test case

Time lag, s

0.3

0.4

References

- [1] Tokovinin A. 2002, Appl. Opt., 41, 957
- [2] Tokovinin A. et al. 2008, A&A, 477, 671
- [3] Fusco T. et al. 2004, J. Opt., 6, 585
- [4] Travouillon et al. 2009, PASP, 121, 787

http://www.ctio.noao.edu/~atokovin/profiler/archive.html