Development of the NLOT Site Characterization Instruments

Padmakar Singh Parihar
Indian Institute of Astrophysics, Bangalore India

Outline

1)Optical Astronomy in India: Present and Future.

2)Indian Astronomical Observatory Hanle.

3)Effort to develop various site characterization instruments for the NLOT

Optical Astronomy in India: Present and Future

- ¹Total six telescopes of 1-2 meter sizes, distributed all over India.
- ²⁾ One 3.6 meter project in midway and the first light is expected in 2014-15.
- 3)India has got observers status to the TMT project.
- ⁴⁾ Indian astronomical community has no access to 8-10 meter (limited access to SALT)
- 5) Need to have 8-10m size telescope: NLOT

Optical Observatories in India

VBO

IAO 2m

DOT 3.6m

The potential sites for the NLOT: Trans Himalayan Region

Indian Astronomical Observatory

One 2m HCT telescope, operation remotely since 2000.

One 0.5 Robotic Antipodal Transient Observatory.

http://www.iiap.res.in/centers/iao

Coordinate

Altitude Wind Speed

Wind Direction Rain & snow

PWV

Number of usable nights

32:46:46s N 78:57:51s E

4500 meters above msl Median 2.2 m/s at night

Prevailing south-south-easterly < 7 cm

< 2 mm between October - April

~ 260 per year

The potential sites for the NLOT: Close to IAO Hanle

Place	Distance (road)	Distance(Aeria l)	Latitude(m)	Longitude	Latitude
Leh	270km				
Hanle (base camp)	0		3500		
Hanle (IAO)	4.5km		4500	78:57:51.0	32:46:46
Kalaktartal	25km		5111	79:00:44.4	32:38:23.4
Raindong	20km		5055	78:55:20.4	32:50:46.92
Twin-lake	45km				

Status of the NLOT site characterization instruments

Meteorological parameters:

Three Automatic Weather Station are acquired and in use.

Sky transparency/brightness:

- 'One night camera and day night camera
- Extinction and sky brightness monitor is being developed and expected to see the first light by March 2011.
- 'NLST Skyradio meter is in operation since 2007.
- ✓220 Giga Htz radiometer is in operation since 1999.

Seeing monitors:

- One Differential Image Motion Monitor (DIMM) has developed and installed at Hanle 2010
- Other mobile DIMM will ready by April 2011

Atmospheric turbulence profiles $C_n^2(h,t)$:

- 'One microthermal measuring instrument being devloped
- 'A Lunar Scintillometer has been also proposed
- *MASS (Multi-aperture scintillation Sensors) development work has been initiated

Statistics of the clear sky at IAO

Statistics of the clear sky can be obtained from following sources

- Hourly visual monitoring of the sky since 1995
- Observing log of HCT since May 2003
- ·CONCAM: All sky night camera since 2004
- Day-Night all sky Camera since 2010
- · Satellite images

Number of spectroscopic/usable nights = 263±17(72±5%)

Number of photometric/clear nights = 191±25(52±7%)

....Usable nights trough out the year.

The clear sky at best astronomical sites

Usable nights = 78-85% (Mauna Kea = 78%)

Clear nights = 69-83% (Mauna Kea = 69%)

Jan.

No. of Spectroscopic/Photometric nights

Jan.

Apr.

Aug.

Sop.

Oct.

Dec.

Monthly distribution of clear nights

All Sky Camera's

- All sky day and night camera, operating around the clocks provides unbiased statistics of the clear skies.
- They can also be used to get course extinction map of the sky and to detect cirrus clouds.
- One night (CONCAM) and one day-night (StellaCam II) camera are used to monitor Hanle sky.
- w. CONCAM is in operation since 2005 and data is being used to get statistics of clear sky.
- v. Two sttella Cam II has been tested and will be put in operation soon

All sky night camera: Concam

All Sky day-night Camera:

NLOT DIMM

- The old DIMM was operational during 1998-2001. Nearly 1 arc-sec median seeing was obtained.
- Development of new DIMM for the NLOT started in March 2009 and installed at IAO in Sep 2009.
- Few more DIMM are planed to be developed, including one mobile DIMM.

Hard ware specification:

Telescope:

MEADE LX200GPS
Diameter 0.35cm (F/10)
GPS receiver
Micro focuser
Flip mirror
~4' RMS pointing error
RS232 Serial Interface

CCD:

SBIG ST-5
RS232 Serial Interface
Maximum Baud Rate: 115kbps
320x240 array size
Pixel size 10x10 micron
0.59"/pixels
TE cooling (-20 C)

Hole size = 57mm Hole separation = 272mm Spot separation = 30 arc-sec

The Control Software

The Software:-

We have chosen client- server mode of operation using socket programming and all hardwares are controlled by servers.

All CCD and Telescope control software functions are written in C++ in Linux platform. The GUI is in QT.

The DIMM control software will be shortly linked with the weather station and the web.

Atmospheric Extinction and sky brightness at IAO Hanle

Over more than 60 nights, 2m HCT was used to get extinction and sky brightness.

Distribution of atmospheric extinction at IAO.

Inra-night extinction variation in LaSilla

	Extinction	
	IAO	Mauna Kea
U	0.36±0.07	0.36
В	0.21±0.04	0.20
V	0.12±0.04	0.12
R	0.09±0.04	0.10
Ī	0.05± 0.04	0.05

Sky Brightness

IAO	Paranal
U 22.14±0.32	22.35
B 22.42±0.30	22.67
V 21.28±0.20	21.71
R 20.54±0.37	20.70
I 18.86±0.05	19.20

Development of Automated Extinction and Sky Brightness Monitor

Motivation

- 1) Very accurate measurement of atmospheric extinction in single band.
- 2) Statistics of clear sky (photometric nights/hours).
- Instantaneous measurement of extinction.
- Measuring the sky brightness.

Hardwares

- Equatorial Yoke mount
- 2) Driven by 5 phase stepper motor and custom made controller.
- Optics is a Nikon Telephoto lens F/4, D=75mm
- ST-8 Thermo electrically cooled CCD camera.
- FOV 2.6x1.7 degree.

Extinction and Sky Brightness Monitor

- All 100-200 stars not found to be variables will be used to determine extinction.
- There is no filter wheel in the present design, so initially extinction will be recorded in single R broad band filter.
- In the classical mode extinction monitor will observe any chosen filed ±45 degree around the meridian at variable airmass.
- In instantaneous mode, pre-calibrated filed will be observed and instrument will start delivering reliable extinction within 10-20 minutes.
- 5) The pre-calibrated field with very high binning will give very accurate sky brightness.

Simulated FoV

ASAS observations

Optical Aerosol Monitor: NLST Radiometer

The atmospheric extinction due to Aerosol scattering is given by the formula

$$\tau_a(\lambda) = \beta \lambda^{-\alpha}$$

Where τ_a is aerosol optical depth (AOD) , α is Angstrom's exponent and β

- The aerosol scale height can vary by factor of 2 at any site.
- 2) The median AOD is about 0.035.
- No strong seasonal variation has been found.
- 4) The α , is found to be ~0.8.
- ⁵⁾Aerosol particle size distribution peaks near 0.2 micron and 10 micron.

MASS-DIMM

- ₁₀ Till date no measurement of the turbulence profile of upper atmosphere.
- 2) Missed an opportunity to obtain a MASS-DIMM when it was produced in bulk.
- Now with help of Prof. Kornilov and his team plan to develop a MASS-DIMM within a year time.
- 4) Any improvement in the hardware-software may be included.

Micro-thermal measuring instrument

- Differential temperature sensor is made of thin (25 micron) copper wire wound on a hylem sheet and the resistance is chosen close to 1 K Ohm. The The separation between two sensor are 1 meter.
- The transducer (AD590J are used to measures the absolute temperature and hey are placed at middle of the differential sensor.
- The signals coming from both sensor are amplified and a differentail temepratuer signa is fillter using broad band pass filter.
- The Keithley PCI Data Acquisition Card (KPCI 3102) has been used to digitize the analog signals with the 12 bit resolution.

Temperature structure function:

$$D_T(s,h) = <|T(P_1) - T(P_2)|^2>$$

where two probes placed at same height h and horizontally separated by s:
Temperature structure constant:

$$C_T^2 = D_T(s,h)s^{-\frac{2}{3}}$$

Refractive index structure constant:

$$C_n^2 = \left(\frac{80 \times 10^{-6}}{T^2(h)}\right)^2 \times C_T^2$$

Finally the ground layer Seeing:

$$\epsilon_{FWHM} = 5.25\lambda^{-\frac{1}{5}} \left(\oint_0^\infty C_n^2(h) dh \right)^{\frac{3}{5}}$$

Separated by 1m

Differential sensor

Lunar Scintallometer

- Started working to develop a LuSci.
- Need a support from the community operating LuSci...
- 3) Aiming to complete this project with 5-6 months.

$$B_{i,j} = \frac{1}{K} \sum_{k=1}^{K} (\zeta_i \zeta_j)_k,$$

$$B(\mathbf{r}) = \int_0^\infty \mathrm{d}z \ W(\mathbf{r}, z) \ C_n^2(z).$$

The hardware

Web camera 1/4" logitech.com Quickca Lens F=25mm edmundoptics.com NT56-7	6 S 0802HR 1 nm Pro 3000 1

Tokovinin et al (2010)

Thanking

Several instruments are required to evaluate any astronomical sites. Few of them are listed bellow:

Meteorological parameters:

Automatic Weather Station (AWS), High altitude dust from satellite (for example TOM)

Sky transparency/brightness:

All Sky day-night Camera(ASC)
Satellite images
Extinction and sky brightness monitors.

Seeing monitors:

Differential Image Motion Monitor (DIMM)

Atmospheric turbulence profiles $C_n^2(h,t)$:

Microthermal measuring instruments Lunar Scintillometer Generalized Scidar(GS), Single Stars Scidar (SS) Multi-aperture scintillation Sensors (MASS).