

Calibrating measurements of precipitable water vapour

F. Kerber et al.

European Southern Observatory

at Site 2010 Kislovodsk

Collaboration

- University of Lethbridge, Canada
 - R. Querel, D. Naylor, G. Tompkins
- U. Valparaiso
 - A. Chacón, O. Cuevas, M. Cure, L. Cortes, M. Caneo, L. Illanes
- GMT, Las Campanas
 - J. Thomas-Osip, G. Prieto
- **TMT**
 - A. Otárola, M. Schöck, T. Travouillon
- ESO
 - R. Hanuschik, M. Sarazin, C. Guirao, G. Avila, G. Lo Curto, I.
 Saviane, A. Pizarro, G. Ihle, J. Navarette, A. Smette, D. Rabanus

Outline

- PWV why & how
- E-ELT site testing
- Goals
- Archival data reconstructing the past
- **PWV campaigns what we have learned**
- Results

Atmospheric Water Vapour

- Precipitable water vapour (PWV)
 - column of atmospheric water [mm]
 - crucial for atmospheric opacity in IR
 - Long-term: site quality
 - Short-term: operational issue

E-ELT site testing

- **PWV** is one factor for site selection
- Better understand atmospheric PWV
 - Variability
 - Calibrate measurements
- La Silla & Paranal well-established sites
- Report to Site Selection Advisory Committee

Goals:

- Reconstruct Record of Precipitable Water Vapour (PWV) over Paranal & La Silla
- Correlate with satellite data to establish Paranal & La Silla as reference sites for E-ELT site evaluation
- Evaluate merit of methods for operational use at observatory

Reconstructing the PWV History

- La Silla Paranal
 - UVES & FEROS
- Standard Star Observations
 - White dwarfs featureless spectrum
 - Taken every UVES night; ~1200 observations useable
 - Time coverage: 2000-2009
 - Wide slit: 5/10 arcsec
 - UVES reprocessing with master calibration files

Atmosphere Model: PWV

- Atmospheric model BTRAM (Univ. Lethbridge)
 - HITRAN (2008)
 - Multi-layer atmospheric radiative transfer model
 - Mid-latitude profile modified with site-specific archival radiosonde data from Antofagasta
 - 580-980 nm, >1000 lines
 - Validated at LCO with MIKE observations
 - Comparison with IRMA (Querel et al. 2008)

Atmospheric Model: PWV

Paranal: wet & dry

F. Kerber et al.

Site 2010 Kislovodsk, Oct 5th, 2010

Satellite Data

- GOES
 - Time resolution 1 every 3 h, 24 h a day
 - Spatial resolution 12 by 12 km (3 pixel binning)
 - Brightness at 6.5 & 10.7 μ m clear nights only
- ENVISAT
 - Time resolution 1 every 2-3 days, daytime
 - MERIS: Spatial resolution 1 by 1 km
 - Spectrum: 890-900 nm

Paranal UVES archival Data

F. Kerber et al.

Site 2010 Kislovodsk, Oct 5th, 2010

PWV over Paranal: Mar-Jul 2003

PWV over Paranal: May 2004

PWV site statistics

Paranal	Median PWV [mm]	< 1 mm [%]	< 1.5 mm [%]	< 2 mm [%]
UVES	2.1 ± 0.3 (2.2)	13.5	32	47.3
GOES	$2.4 \pm 0.5 (1.8)$	4.8	18.9	38
MERIS	2.7 ± 0.3 (2.0)	1.5	7.9	29

PWV site statistics

La Silla	Median PWV [mm]	< 1 mm [%]	< 1.5 mm [%]	< 2 mm [%]
FEROS	3.4 ± 0.4 (2.4)	3.3	9.2	18.4
GOES	$5.9 \pm 0.6 (2.5)$	0.02	0.4	1.8
MERIS	$3.6 \pm 0.5 (2.3)$	0.8	11.2	20

PWV Campaigns Jul/Aug & Nov 2009

F. Kerber et al.

Site 2010 Kislovodsk, Oct 5th, 2010

PWV Campaigns in technical time

- Paranal:
 - UVES 700 nm (~950 spectra, cadence 30-60s)
 - BACHES 700 nm (140 spectra, 15-30 min)
 - CRIRES 5050 nm (110 spectra)
 - VISIR 19.5 μ m (65 spectra)
 - IRMAs 20 μ m (~700 h, cadence sec)
- Radiosonde balloon launches (U Valparaiso)
 - 1-1.5 h, 20-25 km altitude
 - ~70 launches (La Silla, Paranal)

Radiosondes

A. Chacón et al. (U. Valparaiso)

F. Kerber et al.

Site 2010 Kislovods

Radiosonde Profiles

PWV Campaign La Silla - May 2009

PWV Campaign Paranal - Nov 2009

Paranal vs Armazones

Radiosonde vs GOES

F. Kerber et al.

Site 2010 Kislovodsk, Oct 5th, 2010

Results

- Median PWV over La Silla Paranal E-ELT site evaluation
 - Paranal 2.4 mm
 - La Silla 3.7 mm
 - Armazones 2.1 mm (Otárola et al. 2010: 2.9 mm)
- Validated various methods with respect to radiosondes
 - 700 nm 20 μ m
 - 5-20%; ≥0.25/0.5 mm
- Remote sensing data (satellites) usable for statistical analysis only, ok for site evaluation 29

Next Steps

- Complete analysis (typical time scale of variability)
- Monitoring at Paranal:
 - http://www.eso.org/qc/GENERAL/PWV/HEALTH/trend _report_ambient_PWV_HC.html
 - http://www.eso.org/sci/facilities/paranal/sciops/CALISTA /pwv/data.html
- VISIR upgrade includes PWV
- **PWV** forecasting using WRF model (U. Valparaiso)

PWV Time dependence

- IRMA 10 days
- PWV typical time constant is hours

T. Travouillon

F. Kerber et al.

Site 2010 Kislov

PWV Time dependence

A. Otárola

PWV Time dependence

VISIR upgrade project

VISIR upgrade project

- Science benefit for demanding observations
 - imaging of faint sources in Q,
 - high-precision photometry,
 - spectroscopy of H_2 0-0 S(1) at 17.02 μ m,
 - imaging and spectroscopy in N-band < 8 μm,
 - detection of water vapour in circumstellar disks

Paranal PWV across the year

Summary - Goals met

- History of PWV over La Silla & Paranal reconstructed from archival data
- Paranal as reference site for Northern Chile
- Feedback to Site selection process
- Merit for Observatory operations
 - Monitoring with high accuracy feasible
 - PWV crucial tool for scheduling of service mode

Summary - Future

- PWV monitor: Stand-alone, high time resolution, high accuracy
- VISIR: Observing constraint service mode
- Benefit to other instrument (CRIRES, MIDI, ISAAC, ...)
- Comprehensive atmospheric monitoring essential part of infrastructure for E-ELT

Courtesy:Wordle.net